Machan Research Group

Inorganic chemistry focused on catalysis related to energy, electrochemistry, spectroelectrochemistry, and materials chemistry



Google Scholar               ORCID

Research @ UVA

17. Electrocatalytic CO2 Reduction to Formate with Molecular Fe(III) Complexes Containing Pendent Proton Relays


Nichols, A.W.; Hooe, S.L.; Kuehner, J.S.; Dickie, D.A.; Machan, C.W.* Inorg. Chem. 2020 DOI:

16. Advances in the Molecular Catalysis of Dioxygen Reduction

Machan, C.W.* ACS Catalysis 2020 DOI: 10.1021/acscatal.9b04477 

15. Electrochemical CO2 Reduction in a Continuous Non-Aqueous Flow Configuration with [Ni(cyclam)]2+ Catalyst​

Jiang, C.; Nichols, A.W.; Walzer, J.F.; Machan, C.W.* Inorg. Chem. 2020 DOI: 10.1021/acs.inorgchem.9b03171

14. Highly Efficient Electrocatalytic Reduction of CO2 to CO by a Molecular Chromium Complex​

Hooe, S.L.; Dressel, J.M.; Dickie, D.A.; Machan, C.W. ACS Catalysis 2020 DOI: 10.1021/acscatal.9b04687

13. Catalytic Reduction of O2 to H2O2 via a Mn Complex

Hooe, S.L.; Machan, C.W.* Trends in Chemistry - Mechanism of the Month 2019 DOI:

12. Secondary-Sphere Effects in Molecular Electrocatalytic CO2 Reduction

Nichols, A.W.; Machan, C.W.* Frontiers in Chemistry - Inorganic Chemistry 2019 DOI: 10.3389/fchem.2019.00397

11. Electrocatalytic Reduction of Dioxygen by Mn(III) meso-Tetra(N-methylpyridinium-4-yl)porphyrin in Universal Buffer

Lieske, L.E.; Hooe, S.L.; Nichols, A.W.; Machan, Charles W.* Dalton Transactions 2019 DOI: 10.1039/C9DT01436E

10. Metal-Organic Frameworks as Porous Templates for Enhanced Cobalt Oxide Electrocatalyst Performance 

Huelsenbeck, L.; Hooe, S.L.; Ghorbanpour, A.; Conley, A.M.; Heinrich, H.; Machan, Charles W.*; Giri, G.* ACS Applied Energy Materials 2019 DOI: 10.1021/acsaem.9b00127

9. A Look at Periodic Trends in d-Block Molecular Electrocatalysts for CO2 Reduction

Jiang, C.; Nichols, A.W.; Machan, Charles W.* Dalton Transactions 2019 DOI: 10.1039/C9DT00491B

8. Recent Advances in Spectroelectrochemistry Related to Molecular Catalytic Processes

Machan, C.W.* Current Opinion in Electrochemistry 2019 DOI: 10.10.1016/j.coelec.2019.03.010

7. Metal-Free Electrochemical Reduction of Carbon Dioxide Mediated by Cyclic(Alkyl)(Amino) Carbenes

Lieske, L.E.†; Freeman, L.A.†; Wang, G.; Dickie, D.A.; Gilliard Jr., R.J.*; Machan, C.W. * Chemistry – A European Journal 2019 DOI: 10.1002/chem.201900316

6. Dioxygen Reduction to Hydrogen Peroxide by a Molecular Mn Complex: Mechanistic Divergence Between Homogeneous and Heterogeneous Reductants

Hooe, S.L. and Machan, C.W. Journal of the American Chemical Society 2019 DOI: 10.1021/jacs.8b13373

5. Nitric oxide activation facilitated by cooperative multimetallic electron transfer within an iron-functionalized polyoxovanadate–alkoxide cluster​

Li, F.; Meyer, R.L.; Carpenter, S.H.; VanGelder, L.E.; Nichols, A.W.; Machan, C.W.; Neidig, M.L.; Matson, E.M.* Chemical Science 2018 DOI: 10.1039/C8SC00987B 

4. Electrochemical Reduction of Carbon Dioxide with a Molecular Polypyridyl Nickel Complex

Lieske, L.E.; Rheingold, A.L.; Machan, C.W. Sustainable Energy & Fuels 2018 DOI: 10.1039/C8SE00027A

3. Reversible Modulation of the Redox Characteristics of Acid-Sensitive Molybdenum and Tungsten Scorpionate Complexes

Heyer, A.J.; Shivokevich, P.J.; Hooe, S.L.; Welch, K.D.; Harman, W.D.; Machan, C.W. Dalton Transactions2018 DOI:10.1039/C8DT00598B

2. Electrocatalytic Reduction of CO2 to Formate by an Iron Schiff Base Complex

Nichols, A.W.; Chatterjee, S.; Sabat, M.; Machan, C.W. Inorg. Chem. 2018, DOI: 10.1021/acs.inorgchem.7b02955

1. Electrocatalytic Reduction of Dioxygen to Hydrogen Peroxide by a Molecular Manganese Complex with a Bipyridine-Containing Schiff Base Ligand

Hooe, S.L.; Rheingold, A.L.; Machan, C.W. J. Am. Chem. Soc. 2018, DOI: 10.1021/jacs.7b09027


Postdoctoral Research

17. Charged Macromolecular Rhenium Bipyridine Catalysts with Tunable CO2 Reduction Potentials

Sahu, S.; Cheung, P.L.; Machan, C.W.; Chabolla, S.A.; Kubiak, C.P.; Gianneschi, N.C. Chem. Eur. J. 2017, DOI: 10.1002/chem.201701901

16. Concerted One-Electron Two-Proton Transfer Processes in Models Inspired by the Tyr-His Couple of Photosystem II

Huynh, M.R.; Mora, S.J.; Villalba, M.; Tejeda-Ferrari, M.E.; Liddell, P.A; Cherry, B.R.; Teillout, A.-L.; Machan, C.W.; Kubiak, C.P.; Gust, D.; Moore, T.A.; Hammes-Schiffer, S.; Moore, A.L. ACS Cent. Sci. 2017, DOI: 10.1021/acscentsci.7b00125

15. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups

Chabolla, S.A.; Machan, C.W.; Yin, J.; Dellamary, E.A.; Sahu, S.; Gianneschi, N.C.; Gilson, M.K.; Tezcan, F.A.; Kubiak, C.P. Faraday Discuss. 2017, DOI: 10.1039/c7fd00003k

14. Electrocatalytic Reduction of Carbon Dioxide with Mn(terpyridine) Carbonyl Complexes

Machan, C.W.; Kubiak, C.P. Dalton Trans. 201645, 17179

13. Interrogating Heterobimetallic Co-Catalytic Responses for the Electrocatalytic Reduction of CO2 Using Supramolecular Assembly

Machan, C.W.; Kubiak, C.P. Dalton Trans. Special Issue on 'Reactions Facilitated by Ligand Design' 2016, 45, 15942

12. Improving the Efficiency and Activity of Electrocatalysts for the Reduction of CO2 Through Supramolecular Assembly with Amino Acid-Modified Ligands

Machan, C.W.; Yin, J.; Chabolla, S.A.; Gilson, M.K.; Kubiak, C.P. J. Am. Chem. Soc. 2016, 138, 8184

11. Re(I) NHC Complexes for Electrocatalytic Conversion of CO2

Stanton III, C.J.; Machan, C.W.; Vandezande, J.E.; Jin, T.; Majetich, G.; Schaefer III, H.F.; Kubiak, C.P.; Li, G.; Agarwal, J. Inorg. Chem. 2016, 55, 3136

10. Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3

Cheung, P.L.; Machan, C.W.; Malkhasian, Y.S.; Agarwal, J.; Kubiak, C.P. Inorg. Chem. 2016, 55, 3192

9. Rapid synthesis of redox-active dodecaborane B12(OR)12 clusters under ambient conditions

Wixtrom, A.I.; Shao, Y.; Jung, D.; Machan, C.W.; Kevork, S.N.; Qian, E.A.; Axtell, J.C.; Khan, S.I.; Kubiak, C.P.; Spokoyny, A.M. Inorg. Chem. Front. (Emerging Investigator Issue) 2016, 3, 711

8. Orientation of Immobilized Cyano-Substituted Bipyridine Re(I) fac-Tricarbonyl Electrocatalysts on Au Surfaces

Clark, M.L.; Rudshteyn, B.; Ge, A.; Chabolla, S.A.; Machan, C.W.; Psciuk, B.T.; Song, J.; Canzi, G.; Lian, T.; Batista, V.S.; Kubiak, C.P. J. Phys. Chem. C 2016, 120, 1657

7. Electrocatalytic Reduction of Carbon Dioxide by Mn(CN)(2,2ʹ-bipyridine(CO)3: CN Coordination Alters Mechanism

Machan, C.W.; Stanton III, C.J.; Vandezande, J.E.; Majetich, G.F.; Schaefer III, H.F; Kubiak, C.P.; Agarwal, J. Inorg. Chem. 2015, 54, 8849

6. Reductive Disproportionation of Carbon Dioxide by an Alkyl-Functionalized Pyridine Monoimine Re(I) fac-tricarbonyl Electrocatalyst

Machan, C.W.; Chabolla, S.A.; Kubiak, C.P. Organometallics 2015, 34, 4678

5. A Molecular Ruthenium Electrocatalyst for the Reduction of Carbon Dioxide to CO and Formate

Machan, C.W.; Sampson, M.D.; Kubiak, C.P. J. Am. Chem. Soc. 2015, 137, 8564

4. Synthesis, Spectroscopy, and Electrochemistry of (α-diimine)M(CO)3Br, M = Mn, Re, Complexes: Ligands Isoelectronic to Bipyridyl Show Differences in CO2 Reduction

Vollmer, M.; Machan, C.W.; Clark, M.L.; Antholine, W.; Agarwal, J.; Schaefer, H.F.; Kubiak, C.P; Walensky, J. Organometallics 2015, 34, 3

3. Supramolecular Assembly Promotes the Electrocatalytic Reduction of Carbon Dioxide by Re(I) Bipyridine Catalysts at a Lower Overpotential

Machan, C.W.; Chabolla, S.A.; Yin, J.; Gilson, M.K.; Tezcan, F.A.; Kubiak, C.P. J. Am. Chem. Soc. 2014, 136, 14598

2. Combined Steric and Electronic Effects of Positional Substitution on Dimethyl-Bipyridine Rhenium(I) Tricarbonyl Electrocatalysts for the Reduction of CO2

Chabolla, S.A.; Dellamary, E.A.; Machan, C.W.; Tezcan, F.A.; Kubiak, C.P. Inorg. Chim. Acta 2014, 422, 109

1. Developing a Mechanistic Understanding of Molecular Electrocatalysts for CO2 Reduction Using Infrared Spectroelectrochemistry

Machan, C.W.; Sampson, M.D.; Chabolla, S.A.; Dang, T.; Kubiak, C.P. Organometallics 2014, 33, 4550

Graduate Research

7. General Strategy for the Synthesis of Rigid Higher-Order Platinum(II) Complexes via the Weak-Link Approach: Tweezers, Triple-Layers and Macrocycles

Kennedy, R.D.; Machan, C.W.; McGuirk, C.M.; Rosen, M.S.; Stern, C.L.; Mirkin, C.A. Inorg. Chem. 2013, 52, 5876

6. One-Pot Synthesis of an Fe(II) Bisterpyridine Complex with Allosterically Regulated Electronic Properties

Machan, C.W.; Adelhardt, M.; Sarjeant, A.A.; Stern, C.L.; Sutter, J.; Meyer, K.; Mirkin, C. A. J. Am. Chem. Soc. 2012, 134, 16921

5. Crystallographic Snapshots of the Bond-Breaking Isomerization Reactions of Ni(II) Complexes with Hemilabile Ligands

Machan, C.W.; Lifschitz, A.M.; Sarjeant, A.A.; Stern, C.L.; Mirkin, C.A.; Angew. Chem., Int. Ed. 2012, 51, 1469

4. A Coordination Chemistry Dichotomy for Icosahedral Carborane-Based Ligands

Spokoyny, A.M.; Machan, C.W.; Clingerman, D.J.; Rosen, M.S.; Wiester, M.J.; Kennedy, R.D.; Sarjeant, A.A.; Stern, C.L.; Mirkin, C.A.; Nat. Chem. 2011, 3, 590 Highlight by A. Weller, ibid.

3. Plasticity of the Nickel (II) Coordination Environment in Complexes with Hemilabile Phosphino Thioether Ligands

Machan, C.W.; Spokoyny, A.M.; Jones, M.R.; Sarjeant, A.A.; Stern, C.L.; Mirkin, C.A. J. Am. Chem. Soc. 2011, 33, 3023

2. Chelating Effect as a Driving Force for the Selective Formation of Heteroligated Pt(II) Complexes with Bidentate Phosphino-Chalcoether Ligands

Rosen, M.S.; Spokoyny, A.M.; Machan, C.W.; Stern, C.; Sarjeant, A.A.; Mirkin, C.A.; Inorg. Chem. 2011, 50, 1411

1. Electronic Tuning of Nickel-Based Bis(dicarbollide) Redox Shutles in Dye-Sensitized Solar Cells

Spokoyny, A.M.; Li, T.C.; Farha, O.K.; Machan, C.W.; She, C.; Marks, T.J.; Hupp, J.T.; Mirkin, C.A.; Angew. Chem., Int. Ed. 2010, 49, 5339