Publications

Google Scholar               ORCID

RESEARCH @ UVA

73. Photoluminescence Switching in Quantum Dots Connected with Carboxylic Acid and Thiocarboxylic Acid End-Group Diarylethene Molecules

Sarabamoun, E.S.; Aryal, P.; Bietsch, J.M.; Curran, M.; Verma, S.; Yoon, L.U.; Reid, A.G.; Tsai, E.H.R.; Machan, C.W.; Paolucci, C.; Wang, G.*; Choi, J.J.* J. Phys. Chem. C 2024, DOI: 10.1021/acs.jpcc.4c04978. 

72. Developing Homogeneous First Row Early Transition Metal Catalysts for the Oxygen Reduction Reaction

McCormick, M.J.; Machan C.W.* Dalton Trans. 2024, DOI: 10.1039/D4DT01969E

71. Acid Strength Effects on Dimerization During Metal-Free Catalytic Dioxygen Reduction

Cook, E.N.; Flaxman, L.A.; Reid, A.G.; Dickie, D.A.; Machan, C.W.* J. Am. Chem. Soc. 2024 DOI: 10.1021/jacs.4c05708

70. Pre-Equilibrium Reactions Involving Pendent Relays Improve CO2 Reduction Mediated by Molecular Cr-based Electrocatalysts

Moberg, M.E.; Reid, A.G.; Dickie, D.A.; Machan, C.W.* Dalton Trans. 2024 DOI: 10.1039/D4DT01981D

69. Design of Cr-Based Molecular Electrocatalyst Systems for the CO2 Reduction Reaction

Moberg, M.E.; Machan, C.W.* Acc. Chem. Res. 2024 DOI: 10.1021/acs.accounts.4c00283

68. Exploring the Role of Polymer Interactions During Water Electrolysis Under Basic Conditions with Bifunctional Cobalt Corroles

Sahoo, S.; Johnson, E.K.; Wei, X.; Zhang, S.; Machan, C.W.* Energy Adv. 2024 DOI: 10.1039/D4YA00257A

67. Expanding the Design Space of Polymer–Metal Organic Framework (MOF) Gels by Understanding Polymer–MOF Interactions

Verma, P.; Bannon, M.S.; Kuenen, M.K.; Ray, S.; Dhakal, A.; Stone, K.; Nichols, A.W.; Machan, C.W.; Colón, Y.J.; Letteri, R.A.; Guarav, G. Chem. Mater. 2024 DOI: 10.1021/acs.chemmater.4c00112.

66. Improving Co-Electrocatalytic Carbon Dioxide Reduction by Optimizing the Relative Potentials of the Redox Mediator and Catalyst

Reid, A.G.; Zelenke, E.A.; Moberg, M.E.; Dickie, D.A.; Machan, C.W.* Chem. Commun. 2024 DOI: 10.1039/D4CC01988A. ** Inside Cover

65. Metal-Free Homogeneous O2 Reduction by an Iminium-Based Electrocatalyst

Cook, E.N.; Davis, A.E.; Hilinski, M.K.*; Machan, C.W.* J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.3c14549.

Cook, E.N.; Coulter, I.M.; Dickie, D.A.; Machan, C.W.* Chem. Sci. 2024, DOI: 10.1039/D3SC02611F.

63. Photoluminescence Switching in Quantum Dots Connected with Fluorinated and Hydrogenated Photochromic Molecules

Sarabamoun, E.S.; Bietch, J.M.; Aryal, P.; Reid, A.G.; Curran, M.; Johnson, G.; Tsai, E.H.R.; Machan, C.W.; Wang, G.; Choi, J. RSC Adv. 2024, DOI: 10.1039/D3RA07539G.

62. Solution Shearing of Zirconium (Zr)-Based Metal–Organic Frameworks NU-901 and MOF-525 Thin Films for Electrocatalytic Reduction Applications

Verma, P.K.; Koellner, C.A.; Hall, H.; Phister, M.R.; Stone, K.H.; Nichols, A.W.; Dhakal, A.; Ashcraft, E.; Machan, C.W.; Giri, G.* ACS Appl. Mater. Interfaces 2023, DOI: 10.1021/acsami.3c12011

61. Sterically Attenuated Electronic Communication in Cobalt Complexes of Meridional Isoquinoline-Derived Ligands for Applications in Electrocatalysis

Reid, A.G.; Moberg, M.E.; Koellner, C.A.; Machan, C.W.*; Thornton, D.A.; Dickenson, J.C.; Stober, J.J.; Turner, D.A.; Tarring, T.J.; Brown, C.A.; Harrison, D.P.* J. Chem. Phys. 2023, DOI: 10.1063/5.0174177

60. Co-Electrocatalytic CO2 Reduction Mediated by a Dibenzophosphole Oxide and a Chromium Complex

Koellner, C.A.; Reid, A.G.; Machan, C.W.* Chem. Commun. 2023 DOI: 10.1039/D3CC00166K

59. Comparisons of bpy and phen Ligand Backbones in Cr-Mediated (Co-)Electrocatalytic CO2 Reduction

Reid, A.G.; Moberg, M.E.; Koellner, C.A.; Moreno, J.J.; Hooe, S.L.; Baugh, K.R.; Dickie, D.A.; Machan, C.W.* Organometallics 2023 DOI: 10.1021/acs.organomet.2c00600

58. Redox Mediators in Homogeneous Co-Electrocatalysis

Reid, A.G. and Machan, C.W. J. Am. Chem. Soc. 2023 DOI: 10.1021/jacs.2c10033

57. Electrocatalytic Hydrogen Evolution Reaction by a Ni(N2O2) Complex Based on 2,2′-bipyridine

Dressel, J.M.; Cook, E.N.; Hooe, S.L.; Moreno, J.J.; Dickie, D.A.; Machan, C.W. Inorg. Chem. Front. 2023 DOI: 10.1039/D2QI01928K

*Frontiers Emerging Investigator Series

56. Homogeneous Electrocatalytic Reduction of CO2 by a CrN3O Complex: Electronic Coupling with a Redox-Active Terpyridine Fragment Favors Selectivity for CO

Reid, A.G.; Hooe, S.L.; Moreno, J.J.; Dickie, D.A.; Machan, C.W.* Inorg. Chem. 2022 DOI: 10.1021/acs.inorgchem.2c02013 

55. Homogeneous Catalysis of Dioxygen Reduction by Molecular Mn Complexes

Cook, E.N.; Machan, C.W.* Chem. Commun. 2022 DOI: 10.1039/D2CC04628H

54. Inverse Potential Scaling in Co-Electrocatalytic Activity for CO2 Reduction Through Redox Mediator Tuning and Catalyst Design

Reid, A.G.; Moreno, J.J.; Hooe, S.L.; Baugh, K.R.; Thomas, I.H.; Dickie, D.A.; Machan, C.W.* Chem. Sci. 2022 DOI: 10.1039/D2SC03258A

 

53. Homogeneous Catalytic Reduction of O2 to H2O by a Terpyridine-Based FeN3O Complex

Cook, E.N.; Hooe, S.L.; Dickie, D.A.; Machan, C.W.* Inorg. Chem. 2022 DOI: 10.1021/acs.inorgchem.2c00524
**Featured Article

52. Bioinspired Mononuclear Mn Complexes for O2 Activation and Biologically Relevant Reactions

Cook, E.N.; Machan, C.W.* Dalton Trans. 2021 DOI: 10.1039/D1DT03178C

**HOT Article

51. Mediated Inner-Sphere Electron Transfer Induces Homogeneous Reduction of CO2 via Through-Space Electronic Conjugation

Hooe, S.L.; Moreno, J. J.; Reid, A.G.; Cook, E.N.; Machan, C.W.* Angew. Chemie, Int. Ed. 2022 DOI: 10.1002/anie.202109645

Corrigendum 61: e202205139

**VIP Designation

50. Catalytic Reduction of Dioxygen to Water by a Bioinspired Non-Heme Iron Complex via a 2+2 Mechanism

Cook, E.N.; Dickie, D.A.; Machan, C.W.* J. Am. Chem. Soc. 2021 DOI: 10.1021/jacs.1c04572

49. Pendent Relay Enhances H2O2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co–N2O2 Complexes

Nichols, A.W.; Cook, E.N.; Gan, Y.J.; Miedaner, P.R.; Dressel, J.M.; Dickie, D.A.; Shafaat, H.S.; Machan, C.W.* J. Am. Chem. Soc. 2021 DOI: 10.1021/jacs.1c03381

48. Non-covalent Assembly of Proton Donors and p-benzoquinone Anions for Co-electrocatalytic Reduction of Dioxygen

Hooe, S.L.; Cook, E.N.; Reid, A.G.; Machan, C.W.* Chem. Sci. 2021 DOI: 10.10139/D1SC01271A

47. Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex

Geer, A. M.; Musgrave III, C.; Webber, C.; Nielsen, R. J.; McKeown, B. A.; Liu, C.; Schleker, P. P. M.; Jakes, P.; Jia, X.; Dickie, D. A.; Granwehr, J.; Zhang, S.; Machan, C. W.*; Goddard, W. A.*; Gunnoe, T. B.*ACS Catal2021 DOI: 10.1021/acscatal.1c01395.

46. DFT Study on the Electrocatalytic Reduction of CO2 to CO by a Molecular Chromium Complex

Moreno, J.J; Hooe, S.H.; Machan, C.W.* Inorg. Chem. 2021 DOI: 10.1021/acs.inorgchem.0c03136

45. Soluble, Crystalline, and Thermally Stable Alkali CO2 and Carbonite (CO22–) Clusters Supported by Cyclic(Alkyl)(Amino) Carbenes

Freeman, L.A.; Obi, A.D.; Machost, H.R.; Molino, A.; Nichols, A.W.; Dickie, D.A.; Wilson, D.J.D.*; Machan, C.W.*; Gilliard Jr., R.J.* Chem. Sci. 2021 DOI: 10.1039/D0SC06851A

44. Reduction of dioxygen to water by a Co(N2O2) complex with a 2,2′-bipyridine backbone​

Nichols, A.W.; Kuehner, J.S.; Huffman, B.L.; Miedaner, P.R.; Dickie, D.A.; Machan, C.W.* Chem. Commun. 2021 DOI: 10.1039/D0CC06763F

43. Controlling Polymorphism and Orientation of NU-901/NU-1000 Metal–Organic Framework Thin Films

Verma, P.K.; Huelsenbeck, L.; Nichols, A.W.; Islamoglu, T.; Heinrich, H.; Machan, C.W.; Giri, G.* Chem. Mater. 2020 DOI: 10.1021/acs.chemmater.0c03539

42. Mechanistic Insight into Initiation and Regioselectivity in the Copolymerization of epoxides and anhydrides by Al Complexes

Popowski, Y.; Moreno, J.J.; Nichols, A.W.; Hooe, S.L.; Bouchey, C.J.; Rath, N.P.; Machan, C.W.*; Tolman, W.B.* Chem. Commun. 2020 DOI: 10/10339/D0CC05652A

41. Electrocatalytic CO2 Reduction to Formate with Molecular Fe(III) Complexes Containing Pendent Proton Relays

Nichols, A.W.; Hooe, S.L.; Kuehner, J.S.; Dickie, D.A.; Machan, C.W.* Inorg. Chem. 2020 DOI: https://doi.org/10.1021/acs.inorgchem.9b03341

40. Advances in the Molecular Catalysis of Dioxygen Reduction

Machan, C.W.* ACS Catal. 2020 DOI: 10.1021/acscatal.9b04477 

39. Electrochemical CO2 Reduction in a Continuous Non-Aqueous Flow Configuration with [Ni(cyclam)]2+ Catalyst​

Jiang, C.; Nichols, A.W.; Walzer, J.F.; Machan, C.W.* Inorg. Chem. 2020 DOI: 10.1021/acs.inorgchem.9b03171

38. Highly Efficient Electrocatalytic Reduction of CO2 to CO by a Molecular Chromium Complex​

Hooe, S.L.; Dressel, J.M.; Dickie, D.A.; Machan, C.W.* ACS Catal. 2020 DOI: 10.1021/acscatal.9b04687

37. Catalytic Reduction of O2 to H2O2 via a Mn Complex

Hooe, S.L.; Machan, C.W.* Trends in Chemistry - Mechanism of the Month 2019 DOI: https://doi.org/10.1016/j.trechm.2019.09.002

36. Secondary-Sphere Effects in Molecular Electrocatalytic CO2 Reduction

Nichols, A.W.; Machan, C.W.* Front. Chemi. - Inorg. Chem. 2019 DOI: 10.3389/fchem.2019.00397

35. Electrocatalytic Reduction of Dioxygen by Mn(III) meso-Tetra(N-methylpyridinium-4-yl)porphyrin in Universal Buffer

Lieske, L.E.; Hooe, S.L.; Nichols, A.W.; Machan, C.W.* Dalton Trans. 2019 DOI: 10.1039/C9DT01436E

**HOT Article

34. Metal-Organic Frameworks as Porous Templates for Enhanced Cobalt Oxide Electrocatalyst Performance 

Huelsenbeck, L.; Hooe, S.L.; Ghorbanpour, A.; Conley, A.M.; Heinrich, H.; Machan, C.W.*; Giri, G.* ACS Appl. Energy Mat. 2019 DOI: 10.1021/acsaem.9b00127

33. A Look at Periodic Trends in d-Block Molecular Electrocatalysts for CO2 Reduction

Jiang, C.; Nichols, A.W.; Machan, C.W.* Dalton Trans. 2019 DOI: 10.1039/C9DT00491B

32. Recent Advances in Spectroelectrochemistry Related to Molecular Catalytic Processes

Machan, C.W.* Curr. Opin. Electrochem. 2019 DOI: 10.10.1016/j.coelec.2019.03.010

31. Metal-Free Electrochemical Reduction of Carbon Dioxide Mediated by Cyclic(Alkyl)(Amino) Carbenes

Lieske, L.E.†; Freeman, L.A.†; Wang, G.; Dickie, D.A.; Gilliard Jr., R.J.*; Machan, C.W. * Chem. – Eur. J. 2019 DOI: 10.1002/chem.201900316

30. Dioxygen Reduction to Hydrogen Peroxide by a Molecular Mn Complex: Mechanistic Divergence Between Homogeneous and Heterogeneous Reductants

Hooe, S.L. and Machan, C.W. J. Am. Chem. Soc. 2019 DOI: 10.1021/jacs.8b13373

29. Nitric oxide activation facilitated by cooperative multimetallic electron transfer within an iron-functionalized polyoxovanadate–alkoxide cluster​

Li, F.; Meyer, R.L.; Carpenter, S.H.; VanGelder, L.E.; Nichols, A.W.; Machan, C.W.; Neidig, M.L.; Matson, E.M.* Chem. Sci. 2018 DOI: 10.1039/C8SC00987B 

28. Electrochemical Reduction of Carbon Dioxide with a Molecular Polypyridyl Nickel Complex

Lieske, L.E.; Rheingold, A.L.; Machan, C.W.* Sust. Energy Fuels 2018 DOI: 10.1039/C8SE00027A

27. Reversible Modulation of the Redox Characteristics of Acid-Sensitive Molybdenum and Tungsten Scorpionate Complexes

Heyer, A.J.; Shivokevich, P.J.; Hooe, S.L.; Welch, K.D.; Harman, W.D.; Machan, C.W. Dalton Trans. 2018 DOI:10.1039/C8DT00598B

26. Electrocatalytic Reduction of CO2 to Formate by an Iron Schiff Base Complex

Nichols, A.W.; Chatterjee, S.; Sabat, M.; Machan, C.W. Inorg. Chem. 2018, DOI: 10.1021/acs.inorgchem.7b02955

25. Electrocatalytic Reduction of Dioxygen to Hydrogen Peroxide by a Molecular Manganese Complex with a Bipyridine-Containing Schiff Base Ligand

Hooe, S.L.; Rheingold, A.L.; Machan, C.W. J. Am. Chem. Soc. 2018, DOI: 10.1021/jacs.7b09027

 

POSTDOCTORAL RESEARCH AT THE UNIVERSITY OF CALIFORNIA – SAN DIEGO

24. Charged Macromolecular Rhenium Bipyridine Catalysts with Tunable CO2 Reduction Potentials

Sahu, S.; Cheung, P.L.; Machan, C.W.; Chabolla, S.A.; Kubiak, C.P.; Gianneschi, N.C. Chem. – Eur. J. 2017, DOI: 10.1002/chem.201701901

23. Concerted One-Electron Two-Proton Transfer Processes in Models Inspired by the Tyr-His Couple of Photosystem II

Huynh, M.R.; Mora, S.J.; Villalba, M.; Tejeda-Ferrari, M.E.; Liddell, P.A; Cherry, B.R.; Teillout, A.-L.; Machan, C.W.; Kubiak, C.P.; Gust, D.; Moore, T.A.; Hammes-Schiffer, S.; Moore, A.L. ACS Cent. Sci. 2017, DOI: 10.1021/acscentsci.7b00125

22. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups

Chabolla, S.A.; Machan, C.W.; Yin, J.; Dellamary, E.A.; Sahu, S.; Gianneschi, N.C.; Gilson, M.K.; Tezcan, F.A.; Kubiak, C.P. Faraday Discuss. 2017, DOI: 10.1039/c7fd00003k

21. Electrocatalytic Reduction of Carbon Dioxide with Mn(terpyridine) Carbonyl Complexes

Machan, C.W.; Kubiak, C.P. Dalton Trans. 201645, 17179

20. Interrogating Heterobimetallic Co-Catalytic Responses for the Electrocatalytic Reduction of CO2 Using Supramolecular Assembly

Machan, C.W.; Kubiak, C.P. Dalton Trans. Special Issue on 'Reactions Facilitated by Ligand Design' 201645, 15942

19. Improving the Efficiency and Activity of Electrocatalysts for the Reduction of CO2 Through Supramolecular Assembly with Amino Acid-Modified Ligands

Machan, C.W.; Yin, J.; Chabolla, S.A.; Gilson, M.K.; Kubiak, C.P. J. Am. Chem. Soc. 2016, 138, 8184

18. Re(I) NHC Complexes for Electrocatalytic Conversion of CO2

Stanton III, C.J.; Machan, C.W.; Vandezande, J.E.; Jin, T.; Majetich, G.; Schaefer III, H.F.; Kubiak, C.P.; Li, G.; Agarwal, J. Inorg. Chem. 201655, 3136

17. Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3

Cheung, P.L.; Machan, C.W.; Malkhasian, Y.S.; Agarwal, J.; Kubiak, C.P. Inorg. Chem. 201655, 3192

16. Rapid synthesis of redox-active dodecaborane B12(OR)12 clusters under ambient conditions

Wixtrom, A.I.; Shao, Y.; Jung, D.; Machan, C.W.; Kevork, S.N.; Qian, E.A.; Axtell, J.C.; Khan, S.I.; Kubiak, C.P.; Spokoyny, A.M. Inorg. Chem. Front. (Emerging Investigator Issue) 20163, 711

15. Orientation of Immobilized Cyano-Substituted Bipyridine Re(I) fac-Tricarbonyl Electrocatalysts on Au Surfaces

Clark, M.L.; Rudshteyn, B.; Ge, A.; Chabolla, S.A.; Machan, C.W.; Psciuk, B.T.; Song, J.; Canzi, G.; Lian, T.; Batista, V.S.; Kubiak, C.P. J. Phys. Chem. C 2016120, 1657

14. Electrocatalytic Reduction of Carbon Dioxide by Mn(CN)(2,2ʹ-bipyridine(CO)3: CN Coordination Alters Mechanism

Machan, C.W.; Stanton III, C.J.; Vandezande, J.E.; Majetich, G.F.; Schaefer III, H.F; Kubiak, C.P.; Agarwal, J. Inorg. Chem. 201554, 8849

13. Reductive Disproportionation of Carbon Dioxide by an Alkyl-Functionalized Pyridine Monoimine Re(I) fac-tricarbonyl Electrocatalyst

Machan, C.W.; Chabolla, S.A.; Kubiak, C.P. Organometallics 201534, 4678

12. A Molecular Ruthenium Electrocatalyst for the Reduction of Carbon Dioxide to CO and Formate

Machan, C.W.; Sampson, M.D.; Kubiak, C.P. J. Am. Chem. Soc. 2015137, 8564

11. Synthesis, Spectroscopy, and Electrochemistry of (α-diimine)M(CO)3Br, M = Mn, Re, Complexes: Ligands Isoelectronic to Bipyridyl Show Differences in CO2 Reduction

Vollmer, M.; Machan, C.W.; Clark, M.L.; Antholine, W.; Agarwal, J.; Schaefer, H.F.; Kubiak, C.P; Walensky, J. Organometallics 201534, 3

10. Supramolecular Assembly Promotes the Electrocatalytic Reduction of Carbon Dioxide by Re(I) Bipyridine Catalysts at a Lower Overpotential

Machan, C.W.; Chabolla, S.A.; Yin, J.; Gilson, M.K.; Tezcan, F.A.; Kubiak, C.P. J. Am. Chem. Soc. 2014136, 14598

9. Combined Steric and Electronic Effects of Positional Substitution on Dimethyl-Bipyridine Rhenium(I) Tricarbonyl Electrocatalysts for the Reduction of CO2

Chabolla, S.A.; Dellamary, E.A.; Machan, C.W.; Tezcan, F.A.; Kubiak, C.P. Inorg. Chim. Acta 2014422, 109

8. Developing a Mechanistic Understanding of Molecular Electrocatalysts for CO2 Reduction Using Infrared Spectroelectrochemistry

Machan, C.W.; Sampson, M.D.; Chabolla, S.A.; Dang, T.; Kubiak, C.P. Organometallics 201433, 4550

GRADUATE RESEARCH AT NORTHWESTERN UNIVERSITY

7. General Strategy for the Synthesis of Rigid Higher-Order Platinum(II) Complexes via the Weak-Link Approach: Tweezers, Triple-Layers and Macrocycles

Kennedy, R.D.; Machan, C.W.; McGuirk, C.M.; Rosen, M.S.; Stern, C.L.; Mirkin, C.A. Inorg. Chem. 201352, 5876

6. One-Pot Synthesis of an Fe(II) Bisterpyridine Complex with Allosterically Regulated Electronic Properties

Machan, C.W.; Adelhardt, M.; Sarjeant, A.A.; Stern, C.L.; Sutter, J.; Meyer, K.; Mirkin, C. A. J. Am. Chem. Soc. 2012134, 16921

5. Crystallographic Snapshots of the Bond-Breaking Isomerization Reactions of Ni(II) Complexes with Hemilabile Ligands

Machan, C.W.; Lifschitz, A.M.; Sarjeant, A.A.; Stern, C.L.; Mirkin, C.A.; Angew. Chem., Int. Ed. 201251, 1469

4. A Coordination Chemistry Dichotomy for Icosahedral Carborane-Based Ligands

Spokoyny, A.M.; Machan, C.W.; Clingerman, D.J.; Rosen, M.S.; Wiester, M.J.; Kennedy, R.D.; Sarjeant, A.A.; Stern, C.L.; Mirkin, C.A.; Nat. Chem. 20113, 590 Highlight by A. Weller, ibid.

3. Plasticity of the Nickel (II) Coordination Environment in Complexes with Hemilabile Phosphino Thioether Ligands

Machan, C.W.; Spokoyny, A.M.; Jones, M.R.; Sarjeant, A.A.; Stern, C.L.; Mirkin, C.A. J. Am. Chem. Soc. 201133, 3023

2. Chelating Effect as a Driving Force for the Selective Formation of Heteroligated Pt(II) Complexes with Bidentate Phosphino-Chalcoether Ligands

Rosen, M.S.; Spokoyny, A.M.; Machan, C.W.; Stern, C.; Sarjeant, A.A.; Mirkin, C.A.; Inorg. Chem. 201150, 1411

1. Electronic Tuning of Nickel-Based Bis(dicarbollide) Redox Shutles in Dye-Sensitized Solar Cells

Spokoyny, A.M.; Li, T.C.; Farha, O.K.; Machan, C.W.; She, C.; Marks, T.J.; Hupp, J.T.; Mirkin, C.A.; Angew. Chem., Int. Ed. 201049, 5339

Sm_Slide3